Video Input of MB86295

© Fujitsu Microelectronics Europe GmbH

<table>
<thead>
<tr>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-12-02</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH restricts its warranties and its liability for all products delivered free of charge (e.g. software include or header files, application examples, application Notes, target boards, evaluation boards, engineering samples of IC’s etc.), its performance and any consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH disclaims all warranties and liabilities for the performance of the Product and any consequential damages in cases of unauthorised decompiling and/or reverse engineering and/or disassembling. Note, all these products are intended and must only be used in an evaluation laboratory environment.

1. Fujitsu Mikroelektronik GmbH warrants that the Product will perform substantially in accordance with the accompanying written materials for a period of 90 days from the date of receipt by the customer. Concerning the hardware components of the Product, Fujitsu Mikroelektronik GmbH warrants that the Product will be free from defects in material and workmanship under use and service as specified in the accompanying written materials for a duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Mikroelektronik GmbH’s entire liability and the customer’s exclusive remedy shall be, at Fujitsu Mikroelektronik GmbH’s sole discretion, either return of the purchase price and the license fee, or replacement of the Product or parts thereof, if the Product is returned to Fujitsu Mikroelektronik GmbH in original packing and without further defects resulting from the customer’s use or the transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to Fujitsu Mikroelektronik GmbH, or abuse or misapplication attributable to the customer or any other third party not relating to Fujitsu Mikroelektronik GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Mikroelektronik GmbH disclaims all other warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability and fitness for a particular purpose for which the Product is not designated.

4. To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH’s and its suppliers’ liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Mikroelektronik GmbH and its suppliers be liable for any damages whatsoever (including but without limitation, consequential and/or indirect damages for personal injury, assets of substantial value, loss of profits, interruption of business operation, loss of information, or any other monetary or pecuniary loss) arising from the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in full effect.
1. Overview

The video capture unit of MB86295 works as shown in figure below:

MB86295 accepts YUV422 (ITU656) or RGB666 video input streams. The ITU656 video input stream corresponds to the „CCIR International Radio Consultative Committee Recommendation 656 – Interfaces for digital component video signals in 525-line and 625-line television systems“.

MB86295 is able to capture video stream data from the 8-bit VI pin in synchronization with the CCLK clock. In this mode, only a digital video stream conforming to ITU-RBT656 can be processed. For this reason, a Y,Cb,Cr 4:2:2 format to which timing reference codes are added is used. The video stream is captured according to the timing reference codes.

Incoming RGB666-data is internally converted to YUV422 using a programmable matrix which also allows contrast and brightness control by modifying the matrix coefficients. Instead of the embedded sync code method used in ITU656 mode, the capture range in RGB mode must be specified by register parameters.

The vertical interpolater can be used for non-interlace conversion in BOB mode and adds rasters between even or odd field. The algorithm which is used is:

Generation of even rasters for odd fields:
\[\text{pix}[x,2n] = \frac{\text{pix}[x,2n-1] + \text{pix}[x,2n+1]}{2} \quad (n=1,2,3, \ldots) \]

Generation of odd rasters for even fields:
\[\text{pix}[x,1] = \text{pix}[x,2]; \]
\[\text{pix}[x,2n-1] = \frac{\text{pix}[x,2n] + \text{pix}[x,2n+1]}{2} \quad (n=2,3,4, \ldots) \]

The down-scaler unit shrinks the input image with any given ratio. Bi-linear interpolation is used for rational image size modification. The upscaling process takes the pictures from the Capture Buffer and works together with the Display Controller. Note that simultaneous up- and downscaling is not possible.

The capture buffer controller stores image data into graphics memory after clipping. A circular buffer management is applied for writing data into the capture buffer. Image data is stored in YCbCr format in graphics memory in this format:

\[
\begin{array}{ccccccccccccccc}
15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline
Y0 & & & & & & & & & & & & & & & & \\
\hline
\hline
Y1 & & & & & & & & & & & & & & & & \\
\hline
\end{array}
\]

\[\text{Cb} \]

\[\text{Cr} \]
The display controller reads image data in video capture synchronously with capture operation and displays it on screen as L1-layer with other layers. Non-interlace conversion in WEAVE mode as well as the upscaling process is controlled by the display controller.

Coral supposes that YCbCr data is converted from RGB by following equations:

\[
\begin{align*}
R' &= \frac{219}{256}R + 16, \quad G' = \frac{219}{256}G + 16, \quad B' = \frac{219}{256}B + 16 \\
Y &= \frac{77}{256}R' + \frac{150}{256}G' + \frac{29}{256}B' \\
Cr &= \frac{131}{256}R' - \frac{110}{256}G' - \frac{21}{256}B' + 128 \\
Cb &= -\frac{44}{256}R' - \frac{87}{256}G' + \frac{131}{256}B' + 128
\end{align*}
\]

The inverse conversion of this is used for YCbCr data to display output.

Note:
- Each coefficient can be defined by registers.
- Cb and Cr components are reduced to half after the RGB→YCbCr operation to form in 4:2:2 format.
2. Modes of non-interlace conversion

Captured video graphics can be displayed in non-interlaced format. Two modes (BOB and WEAVE) can be selected at non-interlace transformation.

If an interlaced video stream is given as input:

Odd fields are transferred in the first 1/60 second and even fields are transferred in the next 1/60 second, so half number of rasters are included in each field. Note that 1/60 second is taken for one field in NTSC while 1/50 second is taken in PAL.

There are two modes of non-interlace conversion or BOB mode and WEAVE mode.
(1) BOB mode

In BOB mode, odd fields are converted into a frame with interpolated rasters in 1/60 second. Even fields are converted in the next frame with interpolated rasters in 1/60 second. This operation is done by the vertical interpolator:
(2) WEAVE mode

In weave mode, a frame is reconstructed from both the odd fields and even fields every 1/30 second and is displayed twice on screen in non-interlaced scanning in 1/30 second. This operation is done by the display controller. The vertical interpolator is not used for WEAVE mode.

NOTE: The WEAVE mode is the appropriate mode for still pictures since the picture quality is higher compared to the BOB mode. Moving pictures in WEAVE mode will have some distortions due to the frame reconstruction from different fields. For moving pictures, the BOB mode is more appropriate.
3. Applied parameters

The following parameters are applied during scaler operation:
(See explanations on next page)
The original picture size is Wa, Ha. The size after scaling should be Wb, Hb.

(1) Scaler parameters

The scaler shrinks or enlarges input image with given ratios defined by the scaling registers. The input image size is defined by input data stream since input data stream includes HSYNC and VSYNC code.

Note: In BOB mode, only one field is passed to the scaler unit. This means if the input image is an 720*480 pixel interlaced frame, the parameters are: Ha = 480 in BOB mode, Ha = 240 in WEAVE mode and Wa = 720 in both modes.

The reduction scale is set by 5bit integer and 11bit fraction values for horizontal and vertical direction. So a setting of VSC=1.0 and HSC=1.0 would be represented by a value of 08000800 in the CSC register. Valid settings for VSC and HSC are from 0800 to FFFF. Set the vertical direction at bits 31 to 16 of the capture scale register (CSC) and the horizontal direction at bits 15 to 00. An example of the expressions for setting a reduction in the vertical and horizontal directions is shown below.

Reduction in vertical direction 576 → 490 lines
576/490 = 1.176
1.176 x 2048=2408 → 0968

Reduction in horizontal direction 720 → 648 pixels
720/648 = 1.111
1.111 x 2048=2275 → 08E3

Therefore, 096808E3 is set in CSC.

In order to use magnify (up-scaling) mode, the horizontal and vertical factor must be less than one. Do not specify different scaling ways (reduction/enlargement) for horizontal and vertical factors! Also initialize the following registers as follows:

- Set the magnify flag in the L1-layer mode register of the display controller.
- Set the picture source size (before magnification) into CMSHP and CMSVL.
- Set the final picture size (after magnification) into CMDHP and CMDVL.

An example of the expressions for setting an enlargement in the vertical and horizontal directions is shown below:

if the input picture size is 480x360 and the display picture size is 640x480, then the parameters for each register are as follows.

- HSCALE=(480/640)*2048=0x0600
- VSCALE=(360/480)*2048=0x0600
- CMSHP=0x00f0
- CMSVL=0x0168
- CMDHP=0x0140
- CMDVL=0x01e0
- L1WW=0x0280
- L1WH=0x01df

(2) Capture buffer controller

From the scaled image, a rectangular area is clipped out before the final picture is written to the memory. The capture buffer controller applies clip range defied by CIHSTR/ CIVSTR / CIHEND / CIVEND registers and stores data into capture buffer area in graphics memory defined by CBOA / CBLA / CBW registers. Capture buffer is managed as ring buffer (if read or write pointer location crosses the limit, it returns to the origin).

(3) Display controller

The display controller displays image data in capture buffer as W-layer with other layers. It follows latest available frame in capture buffer. In WEAVE, the display controller reconstructs a frame from odd field and even field stored in capture buffer. In WEAVE mode, a buffer size of 2.2 frames is the minimum, a safe recommendation is a 2.5 frame buffer.
(c) Displayed on screen

(c) Stored into video capture buffer in WEAVE mode
RGB Parameters

Instead of embedded sync code method used in ITU656 mode, the capture range in RGB mode must be specified by the following register parameters:

1) RGB input mode of capture: Set RGB666 input flag in VCM.

2) HSYNC Cycle: Set the number of HSYNC Cycles in RGBHC.

3) Horizontal Enable area: Set enable area start position and enable picture size into RGBHST and RGBHEN.

4) Vertical Enable area: Set enable area start position and enable picture size into RGBVST and RGBVEN.

For example, if input picture size is 800x400, then parameters for each register are decided as follow:

5) Convert Matrix Coefficient
In order to change the color conversion matrix, set up RGBCMY,RGBCb,RGBCr and RGBCMb.