FR FAMILY
32-BIT MICROCONTROLLER
MB91460

UP/DOWN COUNTER

APPLICATION NOTE
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-06-10</td>
<td>V1.0, First draft, HPi</td>
</tr>
</tbody>
</table>

This document contains 17 pages.
Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH restricts its warranties and its liability for all products delivered free of charge (eg. software include or header files, application examples, target boards, evaluation boards, engineering samples of IC’s etc.), its performance and any consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH disclaims all warranties and liabilities for the performance of the Product and any consequential damages in cases of unauthorised decompiling and/or reverse engineering and/or disassembling. **Note, all these products are intended and must only be used in an evaluation laboratory environment.**

1. Fujitsu Microelectronics Europe GmbH warrants that the Product will perform substantially in accordance with the accompanying written materials for a period of 90 days form the date of receipt by the customer. Concerning the hardware components of the Product, Fujitsu Microelectronics Europe GmbH warrants that the Product will be free from defects in material and workmanship under use and service as specified in the accompanying written materials for a duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Microelectronics Europe GmbH´s entire liability and the customer´s exclusive remedy shall be, at Fujitsu Microelectronics Europe GmbH´s sole discretion, either return of the purchase price and the license fee, or replacement of the Product or parts thereof, if the Product is returned to Fujitsu Microelectronics Europe GmbH in original packing and without further defects resulting from the customer`s use or the transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to Fujitsu Microelectronics Europe GmbH, or abuse or misapplication attributable to the customer or any other third party not relating to Fujitsu Microelectronics Europe GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Microelectronics Europe GmbH disclaims all other warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability and fitness for a particular purpose for which the Product is not designated.

4. To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH´s and its suppliers` liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Microelectronics Europe GmbH and its suppliers be liable for any damages whatsoever (including but without limitation, consequential and/or indirect damages for personal injury, assets of substantial value, loss of profits, interruption of business operation, loss of information, or any other monetary or pecuniary loss) arising from the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in full effect.
Contents

REVISION HISTORY .. 2
WARRANTY AND DISCLAIMER ... 3
CONTENTS .. 4
1 INTRODUCTION .. 5
 1.1 Key Features ... 5

2 UP / DOWN COUNTER ... 6
 2.1 Block Diagrams ... 6
 2.2 Registers ... 7
 2.2.1 Counter Control Register (UDCCn) ... 7
 2.2.2 Count Status Register (UDCSn) .. 8
 2.2.3 Up/Down Counter Register .. 8
 2.2.4 Up/Down Reload/Compare Register .. 8

 2.3 PFM Counter Operation .. 9
 2.3.1 Timer Mode ... 9
 2.3.2 Up/Down Count Mode – ZIN -> Clear Control .. 9
 2.3.3 Up/Down Count Mode – ZIN -> Gate Control ... 10
 2.3.4 Phase Difference Count Mode (Multiply by 2) .. 11
 2.3.5 Phase Difference Count Mode (Multiply by 4) .. 11
 2.3.6 Clear Timing .. 12
 2.3.7 Reload Timing .. 12
 2.3.8 Writing a Value to Counter ... 12

3 SOFTWARE EXAMPLE ... 13
 3.1 Basic setting of the up / down counter ... 13

4 ADDITIONAL INFORMATION ... 15

LIST OF FIGURES ... 16
LIST OF TABLES .. 17
1 Introduction

Triggered by an input signal, 16-bit Up/Down Counter counts up or down within the range of 0 to 65535. Specifically, Up/Down Counter running in the phase difference count mode is suitable for counting the encoder pulse of motors and other equipment. When encoder's output signals of phase A, phase B and phase Z are applied, the counter can achieve precise counting of rotation angles or number of revolutions.

1.1 Key Features

- Two 16bit or four 8bit counter
- Four types of count Mode: Timer mode, Up/Down count mode, Phase difference count mode (Multiply by 2) and Phase difference count mode (Multiply by 4).
- Count source can be either Peripheral clock (CLKP) or External trigger
- Counting range is from 0 to 65535
- Interrupt can be selected out of four type i.e. Counter Match, under flow, over flow and Count direction change.
2 UP / DOWN Counter

THE BASIC FUNCTIONALITY OF UP/DOWN COUNTER IS EXPLAINED

2.1 Block Diagrams

Figure 2-1 shows the internal block diagram of an Up/down counter.

![Block Diagram of Up/Down Counter]

Figure 2-1: Up/Down counter Block Diagram
2.2 Registers

2.2.1 Counter Control Register (UDCCn)

This register is used to control behaviors of Up/Down Counter.

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Name</th>
<th>Explanation</th>
<th>Value</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>M16E</td>
<td>Enable 16 bit mode</td>
<td>0</td>
<td>8 bit × 2 channel operation mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>16 bit × 1 channel operation mode</td>
</tr>
<tr>
<td>14</td>
<td>CDCF</td>
<td>Direction change detection</td>
<td>0</td>
<td>Read: No direction change occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write: Clear the flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Read: Direction change occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write: No effect</td>
</tr>
<tr>
<td>13</td>
<td>CFIE</td>
<td>Direction change interrupt request</td>
<td>0</td>
<td>Disable direction change interrupt requests</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enable direction change interrupt requests</td>
</tr>
<tr>
<td>12</td>
<td>CLKS</td>
<td>Internal clock frequency</td>
<td>0</td>
<td>CLKP / 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>CLKP / 8</td>
</tr>
<tr>
<td>11-10</td>
<td>CMS1,</td>
<td>Counter mode</td>
<td>00</td>
<td>Timer mode (Countdown)</td>
</tr>
<tr>
<td></td>
<td>CMS0</td>
<td></td>
<td>01</td>
<td>Up/down count mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>Phase difference count mode (Multiply by 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Phase difference count mode (Multiply by 4)</td>
</tr>
<tr>
<td>9-8</td>
<td>CES1,</td>
<td>Edge selection</td>
<td>00</td>
<td>Disable edge detection</td>
</tr>
<tr>
<td></td>
<td>CES0</td>
<td></td>
<td>01</td>
<td>Detect a falling edge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>Detect a rising edge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Detect both rising and falling edges</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Reserved</td>
<td>-</td>
<td>Write “0”. Read value is the value written</td>
</tr>
<tr>
<td>6</td>
<td>CTUT</td>
<td>Counter write</td>
<td>0</td>
<td>No impact on operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Transfer data from the RCR register to UDCR.</td>
</tr>
<tr>
<td>5</td>
<td>UCRE</td>
<td>Enable compare-match clear</td>
<td>0</td>
<td>Disable counter clear due to compare-match.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enable counter clear due to compare-match</td>
</tr>
<tr>
<td>4</td>
<td>RLDE</td>
<td>Enable reload</td>
<td>0</td>
<td>Disable reload function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enable reload function</td>
</tr>
<tr>
<td>3</td>
<td>UDCLR</td>
<td>Clear UDCR</td>
<td>0</td>
<td>Set (Clear) Up/Down Counter (UDCR) to “0000H”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>No impact on operation</td>
</tr>
<tr>
<td>2</td>
<td>CGSC</td>
<td>Select counter clear/gate</td>
<td>0</td>
<td>Counter clear function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Gate function</td>
</tr>
<tr>
<td>1-0</td>
<td>CGE1,</td>
<td>Edge detection/level selection</td>
<td>00</td>
<td>Disable edge detection</td>
</tr>
<tr>
<td></td>
<td>CGE0</td>
<td></td>
<td>01</td>
<td>Detect a falling edge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>Detect a rising edge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Disable setting</td>
</tr>
</tbody>
</table>

| n = 1 to 4 |

Table 2-1: UDCCn
2.2.2 Count Status Register (UDCSn)

This register is used to control Up/Down Counter and to indicate the status of the counter.

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Name</th>
<th>Explanation</th>
<th>Value</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CSTR</td>
<td>Enable count operation</td>
<td>0</td>
<td>Disable count operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enable count operation</td>
</tr>
<tr>
<td>6</td>
<td>CITE</td>
<td>Enable compare-match interrupt requests</td>
<td>0</td>
<td>Disable compare-match interrupt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enable compare-match interrupt</td>
</tr>
<tr>
<td>5</td>
<td>UDIE</td>
<td>Overflow/underflow interrupt request</td>
<td>0</td>
<td>Disable overflow/underflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Enable overflow/underflow</td>
</tr>
<tr>
<td>4</td>
<td>CMPF</td>
<td>Compare-match detection flag</td>
<td>0</td>
<td>Read: Comparison results do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>write</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Write: Clear the flag</td>
</tr>
<tr>
<td>3</td>
<td>OVFF</td>
<td>Overflow detection flag</td>
<td>0</td>
<td>Read: No overflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write: Clear the flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Read: An overflow has occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write: No effect</td>
</tr>
<tr>
<td>2</td>
<td>UDFF</td>
<td>Underflow detection flag</td>
<td>0</td>
<td>Read: No overflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write: Clear the flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Read: An underflow has occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Write: No effect</td>
</tr>
<tr>
<td>1-0</td>
<td>UDF1–</td>
<td>Up/down flag</td>
<td>00</td>
<td>No input</td>
</tr>
<tr>
<td></td>
<td>UDF0</td>
<td></td>
<td>01</td>
<td>Count Down</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>Count Up</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Both of Count up and Count Down</td>
</tr>
</tbody>
</table>

Table 2-2: UDCSn

2.2.3 Up/Down Counter Register

This register is used to read the count value of Up/Down Counter.

- 16 Bit Mode (M16E= “1”)
 In the 16 bit mode, UDCR10 and UDCR32 register functions as 16-bit up/down counter register

- 8 Bit Mode (M16E= “0”)
 In the 16 bit mode, UDCR0, UDCR1, UDCR2 and UDCR3 register functions as 8-bit up/down counter register

2.2.4 Up/Down Reload/Compare Register

This register is used to reload a value to Up/Down Counter and to compare the register value with the Counter value. This register is also used to write to Up/Down Counter.

- 16 Bit Mode (M16E= “1”)
 In the 16 bit mode, UDRC10 and UDRC32 register functions as 16-bit reload/compare register

- 8 Bit Mode (M16E= “0”)
 In the 16 bit mode, UDRC0, UDRC1, UDRC2 and UDRC3 register functions as 8-bit reload/compare register
2.2.5 Port function register (DDRn, PFRn, EPFRn)
To enable AIN, BIN and ZIN pin as a Input one should set corresponding DDRn, PFRn and EPFRn register. For more information please refer data sheet of respective device.

2.3 PFM Counter Operation
This section describes each operation mode for Up/Down Counter

2.3.1 Timer Mode
After counter initialisation and triggered by software, it start counting down. When under flow occurs, reload value is loaded in Up/down counter and it starts counting down again. Interrupt is generated at underflow if enabled by software.

![Figure 2-2 Timer Mode](image)

2.3.2 Up/Down Count Mode – ZIN -> Clear Control

![Figure 2-3 Up/down count mode – ZIN -> Clear Control](image)
After initialisation, when pulse input to the AIN pin is detected, Up/Down Counter counts up. The count direction change flag is set to “1”.

When an edge is applied to the ZIN pin, Up/Down Counter is cleared.

When the Up/Down Counter’s count value matches with the compare value (compare-match) than the compare-match flag is set to “1” and counter is cleared.

When pulse input to the AIN pin stops, Up/Down Counter stops counting.

When pulse input to the BIN pin is detected, Up/Down Counter counts down and count direction change flag is set to “1”.

When Up/Down Counter is under flowed than the underflow flag is set to “1”. The underflow causes the reload value to be reloaded to Up/Down Counter.

2.3.3 Up/Down Count Mode – ZIN -> Gate Control

![Figure 2-4 Up/down count mode – ZIN -> Gate Control](image)

Here counting will not start unless and until ZIN input is enabled.

When ZIN is enabled counter starts counting up when pulses are applied at AIN input and Counter counts down when a pulse input to the BIN pin is detected.

Up/Down Counter stops counting when pulse input to the AIN or BIN pin stops and ZIN input is still enabled.
2.3.4 Phase Difference Count Mode (Multiply by 2)

On the rising and falling edges at the BIN count pin, Up/Down Counter counts up or down, depending on the voltage level at the AIN pin.

Counter counts up when the ‘H’ voltage level at the AIN pin detected, on the rising edge at the BIN and after that when the ‘L’ voltage level at the AIN pin detected, on the falling edge at the BIN pin.

Counter counts up down when the ‘L’ voltage level at the AIN pin detected, on the rising edge at the BIN pin and after that when the ‘H’ voltage level at the AIN pin detected, on the falling edge at the BIN pin.

When this count mode is selected, selection of the edge to be detected using UDCCn: CES1 or UDCCn: CES0 is disabled.

2.3.5 Phase Difference Count Mode (Multiply by 4)
On the rising and falling edges at the BIN pin, Up/Down Counter counts up or down, depending on the voltage level at the AIN pin, and on the rising and falling edges at the AIN pin, Up/Down Counter counts up or down, depending on the voltage level at the BIN pin.

Counter counts up…

(1) When the ‘H’ voltage level at the AIN pin detected, on the rising edge at the BIN pin
(2) When the ‘L’ voltage level at the AIN pin detected, on the falling edge at the BIN pin
(3) When the ‘L’ voltage level at the BIN pin detected, on the rising edge at the AIN pin
(4) When the ‘H’ voltage level at the BIN pin detected on the falling edge at the AIN pin

Counter counts down…

(1) When ‘L’ voltage level at the AIN pin detected on the rising edge at the BIN pin
(2) When the ‘H’ voltage level at the AIN pin detected on the falling edge at the BIN pin
(3) When the ‘H’ voltage level at the BIN pin detected, on the rising edge at the AIN
(4) When the ‘L’ voltage level at the BIN pin detected, on the falling edge at the AIN pin

When Up/Down Counter is used to count encoder output, high precise counting of rotation angles and number of revolutions, as well as detecting of rotation directions, can be achieved by applying encoder output signals of phase A and phase B to the AIN and BIN, respectively.

Note that when this count mode is selected, selection of the edge to be detected using UDCCn: CES1 or UDCCn: CES0 is disabled.

2.3.6 Clear Timing

When a clear request (Compare-match, ZIN edge detection and writing “0” to the clear bit UDCCn: UDCLR) is made, clear is performed next time when Up/Down Counter counts up.

Even if a clear request (Compare-match, ZIN edge detection and writing “0” to the clear bit UDCCn: UDCLR) is made, clear is not performed when UP/Down Counter counts neither up nor down.

If Up/Down Counter does not count up after a clear request (Compare-match, ZIN edge detection and writing “0” to the clear bit UDCCn: UDCLR) is made, the counter is cleared when counting is disabled (UDCSn: CSTR="0").

When Up/Down Counter exceeds the maximum count, the overflow flag is set to “1” and the counter value is returned to “0000”.

2.3.7 Reload Timing

The next time when Up/Down Counter counts down below “0000”, an underflow occurs (an interrupt request is generated) and then reloading is performed. If clear and reload operations occur at the same time, clear takes precedence.

2.3.8 Writing a Value to Counter

(1) Counting of Up/Down Counter is disabled UDCCn: CSTR = “0”
(2) A value is written to UDRC
(3) “1” is written to the count write bit UDCCn: CTUT
(4) A value is transferred from the reload/compare register UDCR to Up/Down Counter
3 Software Example

EXAMPLE FOR UP / DOWN COUNTER

3.1 Basic setting of the up / down counter

The following example shows how to set up the up / down counter.

```c
void Up_Down_Counter0_init(char val_CMS, char val_CGSC) {
    DDR20_D0 = 0;  // AIN input
    PFR20_D0 = 1;
    DDR20_D1 = 0;
    PFR20_D1 = 1;
    EPFR20_D1 = 1;  // BIN input
    DDR20_D2 = 0;
    PFR20_D2 = 1;
    EPFR20_D2 = 1;  // ZIN input
    UDCC0_CLKS = 1;  // internal clock frequency F_clkp/8
    UDCC0_M16E = 0;  // 8/16 bits
    UDCC0_CMS = val_CMS;  // timer mode (countdown)
    UDRC0 = 0xFF;  // reload value
    UDCC0_RLDE = 1;  //Enable reload function
    UDCC0_UCRE = 1;  //Enable counter clear due to compare-match
    UDCC0_CES = 2;  //Detect a rising edge
    UDCC0_CGE = 2;  //Select counter clear/gate edge - Detect a rising edge
    UDCC0_CTUT = 1;  //Transfer data from the RCR register to UDCR
    UDCC0_EDIE = 1;  // enable over/underflow request
    UDCC0_CFIE = 1;  // Enable direction change interrupt requests
    UDCC0_CIIE = 1;  // Enable compare-match interrupt requests.
    UDCC0_CGST = val_CGSC;  //set CGSC 0: Clear count 1: Gate Function
    UDCC0_CDCF = 0;  // clear the direction flag
    UDCC0_UDF = 0;  // clear underflow flag
    UDCC0_OVF = 0;  // clear overflow flag
}

void Up_Down_Counter0_activate(char activate) {
    if (activate) UDCS0_CSTR = 1;  // Start counting
    else UDCS0_CSTR = 0;
}

void main(void) {
    __EI();  //enable interrupts
    __set_Il(31);  //allow all levels
    InitIrqLevels();  //init interrupts
    PORTEN = 0x3;  //enable I/O Ports
    Up_Down_Counter0_init (0, 0);  // Timer Mode, ZIN -> Clear Control
    Up_Down_Counter0_init (0, 1);  // Timer Mode, ZIN -> Gate Control
    Up_Down_Counter0_init (1, 0);  // UP/Down Count, ZIN -> Clear Control
    Up_Down_Counter0_init (1, 1);  // UP/Down Count, ZIN -> Gate Control
}
```
// Up_Down_Counter0_init (2, 0); // Phase Difference Count Mode (Multiply
// by 2) ZIN -> Clear Control
// Up_Down_Counter0_init (2, 1); // Phase Difference Count Mode (Multiply
// by 2) ZIN -> Gate Control
// Up_Down_Counter0_init (3, 0); // Phase Difference Count Mode (Multiply
// by 4) ZIN -> Clear Control
// Up_Down_Counter0_init (3, 1); // Phase Difference Count Mode (Multiply
// by 4) ZIN -> Gate Control
Up_Down_Counter0_activate (1);
while (1) // endless loop
{
 HWWD_CL = 0;
}

__interrupt void UDCounter0IRQHandler (void)
{
 if(UDCS0_UDFF)
 {
 /* DO some thing */
 UDCS0_UDFF = 0;
 }
 if(UDCS0_OVFF)
 {
 /* DO some thing */
 UDCS0_OVFF = 0;
 }
 if(UDCS0_CMPF)
 {
 /* DO some thing */
 UDCS0_CMPF = 0;
 }
 if(UDCC0_CDCF)
 {
 /* DO some thing */
 UDCC0_CDCF = 0;
 }
}

/* THIS SAMPLE CODE IS PROVIDED AS IS AND IS SUBJECT TO ALTERATIONS. FUJITSU */
/* MICROELECTRONICS ACCEPTS NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR */
/* ELIGIBILITY FOR ANY PURPOSES. */
/* (C) Fujitsu Microelectronics Europe GmbH */
/* vector.c */
/*--*/
void InitIrqLevels(void)
{
 ...
 ICR56 = 30; /* Up/Down Counter 0 */
 ...
}

__interrupt void UDCounter0IRQHandler (void);
#pragma intvect UDCounter0IRQHandler 128 /* Up/Down Counter 0 */
4 Additional Information

Information about FUJITSU Microcontrollers can be found on the following Internet page:
http://mcu.emea.fujitsu.com/

The software examples related to this application note is:
91460_UpDownCounter
It can be found on the following Internet page:
http://mcu.emea.fujitsu.com/mcu_product/mcu_all_software.htm
List of Figures

Figure 2-1: Up/Down counter Block Diagram ... 6
Figure 2-2 Timer Mode ... 9
Figure 2-2 Up/down count mode – ZIN -> Clear Control .. 9
Figure 2-4 Up/down count mode – ZIN -> Gate Control ... 10
Figure 2-5 Phase Difference Count Mode (Multiply by 2) ... 11
Figure 2-6 Phase Difference Count Mode (Multiply by 4) ... 11
List of Tables

Table 2-1: UDCCn ... 7
Table 2-1: UDCSn.. 8