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Abstract: Humanoid robots are expected to have variety 
of motions that enables good interaction with real human 
environment. Making a program for generating several 
stable motions using the standard programming language 
such as C is not only time consuming but also hard to 
understand and tune. For this, a suitable recurrent neural 
network language (RNN) inspired from neurobiology has 
been developed. In this paper, a simple method of motion 
generation based on polynomials generated by RNN is 
presented. All motions are generated using a basic RNN 
circuit of a first order polynomial. Using this method it is 
easy to generate a complex motion of humanoid robot. 
Furthermore, Feedback controllers can be easily inserted 
in the RNN circuit of a motion at any desired timing. Both 
rhythmic and non-rhythmic motion can be generated based 
on the same strategy. The effectiveness of the proposed 
method is verified by experimental results. 
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1 Introduction 
Recently, humanoid robots are getting more 
popularity and attracted many researchers who have 
developed a variety of solutions dealing with its 
motion and behavior. Most previous works were 
focused on the generation of motion using 
Newtonian dynamics equations, which require a lot 
of computational effort and a long development time 
as well. In our research therefore, we focused on the 
biological based models using the Recurrent Neural 
Network (RNN) theory. For this, an RNN language 
has been developed[1,2,3,4], suitable for the 
programmers to reflect the biological process in 
generating robot motion. In contrast to the 
mathematical notations [6, 7], this proposed language 
would be expected to express the learning process of 
a motion, just by changing connections, and their 
weights for a given RNN circuit. The basic idea 
behind this language is taken from neurobiology, 
where the neural network is assumed to solve 
problems using 4 types of operations namely, 
summation, multiplication by a constant, 

introduction of a time delay constant, and switching. 
Accordingly, the proposed RNN language is limited 
to these four operations. Using this language, several 
RNN circuits are easily designed termed Central 
Pattern Generators (CPG). 
In this paper, generation of both rhythmic and 
non-rhythmic motions is presented. The procedure 
adopted to generate a non-rhythmic motion is based 
on a simple RNN circuit that generates a first order 
polynomial. For example, a kicking motion consists 
of a set of basic circuits. All circuits are linked to 
only one neuron. Once the motion is designed, each 
joint motion is smoothened through a neuron to 
assure the continuity of the angular velocity. The 
designed motion has only two parameters; the 
kicking speed and angle. Then motion is tuned so 
that it remains stable for a wide range of kicking 
speed. As for the rhythmic motion, for instance the 
walking motion, it is designed for one motion cycle 
following the same steps of generating a 
non-rhythmic motion, previously mentioned. To 
make the motion a cyclic one, a time shift is 
considered from an upper level layer so that the 
motion will be regenerated consecutively. 

Moreover, compliance and feedback control are 
also realized for the stability and smoothness of the 
robot motion, where compliance control is activated 
at the landing phase, while the feedback controller is 
enabled during the lifting phase. The feedback 
controllers are designed for a second order plant 
model. The controllers input signals are from both 
gyro and sole sensors. A low pass filters are 
introduced into the control loop. In addition, gait 
control is also considered, where motion switching 
is controlled by an upper level layer that has input 
signals from the gyro sensors.  

As a result, using our proposed method, it is easy 
to implement both feedback and compliance 
controllers as well as ensuring any switching 
condition. An experiment is conducted by having the 
humanoid robot HOAP-2[5] of Fujitsu walk stably on 
an obstacle of 12mm height. The robot can also 
walks with a large step. 



2 Proposed RNN Language[1] 
2.1 Mathematical model of a neuron 
  The mathematical model of a single neuron in the 
proposed RNN language is given by eq.1. Figure 1 
shows its graphical representation. 
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where yi is the output of neuron i, εi is a time delay 
constant, and yj is the output of neuron j that 
represents an input of neuron i through a weighting 
factor cij. Notice that εi can be interpreted as the rise 
time constant of a step input [6]. 
 

2.2 Basic elements 
  In the proposed RNN language, four basic 
elements are defined and summarized in Fig.2, 
which are neuron, wire, cable-C, and cable-W. Their 
definitions are stated below 
2.2.1 Neuron 
To create a neuron with a time delay constant ε and 
initial value V0, we can proceed as follows 

var a(ε) =  V0; 

2.2.2 Wire 
The function of a wire is to connect 2 neurons. For 
example, neuron “a” is connected to neuron “b” by a 
wire of weighting factor C as follows 

a := C * b; 

2.2.3 Cable-W 
Cable-W consists of changing wire’s weighting 
factor. It is created as follows, 

var C(ε) =  V0; 

var a(ε1); 

var b(ε1); 

a := C * b; 

2.2.4 Cable-N 
The function of cable-W is to change other neuron’s 
time delay constant. 

var eps(ε) =  V0; 

var a(eps) = W0; 
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Fig. 1 Representation of a single neuron 
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Fig. 2 Basic elements of the proposed RNN language 
(a): neuron, (b): wire, (c): cable-W, and (d): cable-N 

 
2.3 Permitted Operations 
Only 4 types of operations, as shown in Fig.3, are 
permitted in the proposed RNN language, namely 
summation, multiplication by a constant, 
introduction of a time delay, and switching. Notice 
that a threshold can be considered as a switcher. 
The symbol “#” in fig 3 is used for comment out. 
The graphical notations of switchers are shown in fig. 5. 

Remark 
Both cable-W and cable-N involve a nonlinear 
operation. This does not contradict the definition of 
the proposed language, since cables belong to an 
upper level layer with a different time scale. 
 
2.4 RNN Circuits 
RNN circuit is a set of neurons connected to each 
other by wires. A circuit presents an output and 
input connections. For example, Fig. 4 shows how to 
create a circuit “Joint”. 
 

var v(0.0); 
var w(0.0); 
var y1(ε1);   
var y2(ε2); 
 
y := C1 * y1;      #  Multiply by a constant
y := C1 * y1 + C2 * y2;  #  Summation 
v := if(0.2 < y1) 1.0 * y;  #  Switcher 
w := 1.0 * (0.2 <) y;     #  Threshold 

Dead 
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 Fig. 3 Permitted operation of the proposed language 
 

 

input in[2]; 
output out[1]; 
circuit Joint {var p; …} 
out[0] := 1.0 * ::Joint::p + 1.0 * in[0] +1.0 * in[1]; 

 
Fig. 4 Syntax of creating RNN circuit 
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Fig. 5 Switching in RNN language 
(a): threshold, (b): switcher 

 



3 Proposed Motion Generation Method 
The proposed method consists of designing CPGs of 
several motions using RNN language and based on a 
basic circuit generating first order polynomials. 
 
3.1 Basic RNN circuit 
The basic RNN circuit generating first order 
polynomial is shown in fig. 5. It consists of 2 
neurons u and n, and sub-circuit P1. Neuron u 
generates a unit constant that will be used in the 
whole RNN circuit, while neuron n generates a first 
order polynomial by inserting the output of u into 
neuron n through a wire of weight Cs. All neurons of 
the sub-circuit P1 have null time delay constant, in 
other words they are just connections and digital 
switchers. 
The output y of the basic RNN circuit is shown in 
fig.7. It consists of one degree rotation starting at 
time ts with a constant angular velocity k=cs.m. The 
parameter sw is used to switch ON/OFF a motion. 
By fixing the value of ε equals to 1, the output y1 can 
be expressed as follows, 

ss ttcv −=1                     (2) 

Where ts is a parameter expressed in a number of 
time cycle of a given reference motion T, and cs is a 
constant s.t., Tcs 1= .  
3.2 Motion Generation using basic RNN circuit 
Motion can be regarded as a sequence of basic 
motions generated by polynomials of low order 
degree. For example, to pick up an object, human 
will not enjoy generating a complex motion rather 
than a sequence of simple and smooth motions. 
Therefore, as shown in fig.8, our idea consists of 
generating a sequence of motions using the basic 
RNN circuit of fig. 6. 
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Fig. 6 Basic RNN Circuit generating first order 

polynomial 
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Fig. 7 Output generated by the circuit of fig.6 

 

Now writing the expression of the motion output of 
joint ji as follows,  
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Where 0≥ik  and 0 1 =≥= iii elsettif δδ . 
Notice that with regards to fig6, isi mck =  
 
 
Since the parameter mi determines the velocity of the 
motion from time ti to ti+1, it should be designed 
carefully taking into account the dynamics of the 
motion. Trial and error method can be very effective 
way to find the appropriate value of this parameter. 
As it can be seen from fig. 8, the design of the 
motion using the proposed method is straightforward 
and it can be generated based on sensory feedback 
system. 
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Fig. 8 How to generate motion using basic RNN circuit 
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Fig. 9 Kick motion generation using basic RNN circuit 
 
3.3 Generation of Kick Motion 
As shown in fig.9, the kick motion consists of a 
sequence of 7 basic motions at different timing ti. 
Only one parameter named “Speed” that this motion 
depends on, which may vary within a defined 
interval. By using cable-W, this parameter “Speed” 
changes the wires’ weights so that the robot motion 
remains stable at different kicking speed. To 
determine this parameter, trial and error method was 
adopted. It can be also determined using recursive 
method with sensory feedback and a defined 
evaluation function. Moreover, to ensure the 
continuity of the angular velocity of the motion, 
each joint’s output is passed through a neuron of a 
delay α. The sub-circuits S0 and S6 are used to 
generate the rolling motion of amplitude “R”. Notice 
that if the kicking speed parameter is null, the 
motion of the robot will be reduced to a rolling and 
lifting only. The parameter L1 and L2 correspond to 
the lifting amplitude of the heap-ankle and knee, 
respectively. Also it should be noticed that the same 
sub-circuits Si can be used for several motions, such 
as walking, standing etc... 
Remark: For the readability of fig. 9, the kicking 
angle parameter was ignored. 
 
4 Motion Stabilizers 
The state space configuration of a system is 
converted to RNN structure based on the definition 
of the neuron model given by eq.1. Let’s consider 
the state space of a single input single output (SISO) 
controlled system of order n, which has the 
following expression. 

              ux
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xy C=                   (5) 
The index form of eq. 4 can be written as follows. 
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That can be re-written as 

u
a
bx

a
a

xx
dt
dx

a ii

ii
n

j
j

ii

iji
iii

i

ii

i δδ
δδ

+++=+ ∑
=2

)1(   (7) 

where )( iii asign=δ . 
As a result, the right side of eq.7 represents the value 
of the neuron output xi, and the left side parts are the 
inputs to the neuron. 

 

Figure 10 shows the RNN circuit of the second order 
SISO system (n=2), with the following parameters 
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Fig. 10 RNN structure of state model of eqs.4, 5 



4.1 Feedback and compliance controllers 
State space controllers are designed for a second 
order plant model of an inverse pendulum shown by 
fig.10. The initial value of the controllers’ 
parameters were obtained by simulation then tuned 
during experimentation. For instance, to stabilize the 
pitching motion of the robot, two controllers can be 
used. One controller has angular velocity input from 
the gyro sensor and the second one has input from 
the sole sensor. As for the compliance controllers 
they are also state space controller but with different 
purpose than that of the feedback controller. By 
changing the gain of the controller’s input, the 
stiffness changes accordingly. Therefore, this 
parameter can be controlled according to the type of 
motion. For example, it can be adjusted for a soft 
landing of the robot leg during walking, based on the 
sole sensor’s input. The merits of having an RNN 
implementation of the controller are, 1) easy to tune, 
2) easy to switch at the desirable timing, and 3) the 
whole motion circuit remains simple. 
 
5 Motion Control System 
The real-time control algorithms are implemented in 
real-time threads running at RT-Linux kernel space. 
Linux user space applications are in charge of 
network interface, user command parsing, message 
distribution, and data server management. The 
real-time threads communicate with user space 
applications for data transfer by using high speed 
FIFOs, while commands are sent to the kernel by 
slow speed FIFO. Kernel mode shared memory 
(SM) is constructed for communication between 
real-time threads. Fig.11 shows the diagram of the 
system software, where application program 
interface was made to connect with a client program 
that can run in either Windows or Linux. 
The control algorithms were implemented in 
real-time control thread. After the construction of 
kernel RNN circuit, the control thread was 
scheduled for periodical execution. The control 
period is 1ms. The RNN interface with the robot was 
realized by real-time USB driver thread. 
Figure 12 shows the RNN circuit that generates a set 
of motions. An interface layer (RNN_IO) switches 
the appropriate motion upon user’s request. 
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Fig. 11 Structure of motion control system 
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Fig. 12 RNN circuit for various motions 

 
5.1 Walking motion 
Using FUJITSU Robot HOAP-2, the walking 
motion with compliance controller generated by the 
proposed method enabled the robot to walk with 
large step (20cm) and fast speed as well (11.8cm/s). 
The outputs of the CPG circuit to the knee joint of 
the right leg (pitching and the rolling) are shown in 
fig. 13. The procedure of making this rhythmic 
motion is the same as that of making kick motion 
with the addition of time shift by one walking cycle. 
Notice that this motion is generated using 11 basic 
CPG circuits of fig. 6.  
Inserting the compliance controller in the RNN 
motion circuit yields the outputs of figs. 14, 15 and 
16, where the sensory feedback considerably has 
changed the pitching motion of the heap, knee, and 
ankle. As a result, the robot can walk stably and get 
adapted with the terrain. Using this combination of 
CPG and sensory feedback the robot becomes able 
to walk not only on horizontal terrain but also on a 
slope, and stairs with different step height. 
 
 

 
Fig. 13 Heap Motion using the proposed CPG circuit 

 
 



 
Fig. 14 Pitching motion of the heap joint 

 
 

 
Fig. 15 Pitching motion of the knee joint 

 

 
Fig. 16 Pitching motion of the ankle joint 

 
Moreover, the gain of the compliance controller, the 
robot can walk on an obstacle of 12mm height. By 
controlling the timing ti of the basic RNN circuits in 
eq.3 from an upper level layer, the gait can be 
controlled so that during motion. 
 
6 Conclusion 
In this paper, a simple method for generation of both 
rhythmic and non-rhythmic motions was proposed. 
The procedure adopted to generate a non-rhythmic 
motion is based on a simple RNN circuit that 

generates a first order polynomial. To illustrate this 
idea a kicking motion was design based on the 
proposed method. The steps of making motion were 
straightforward and the tuning can be easily 
achieved. Furthermore, the walking motion was also 
generated based on the same procedure of the kick 
motion with time shift by one walking cycle. 

On the other hand, to make a generated walking 
motion adaptive, compliance and feedback control 
were realized so that the robot may walk on 
horizontal terrain, slope, and stairs with different 
heights. As a result, using our proposed method, it 
was easy to implement both feedback and 
compliance controllers as well as ensuring any 
switching condition. An experiment was conducted 
by having FUJITSU humanoid robot HOAP-2[5] 
walks stably on an obstacle of 12mm height. The 
robot can also walks with a large step. 
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