
Proceedings of the First Asia International Symposium on Mechatronics(AISM 2004)
September 27~30, 2004, Xi’an, China

Motion Generation of Humanoid Robot based on Polynomials
Generated by Recurrent Neural Network

Riadh Zaier

Fujitsu Laboratories Limited, Japan
email: zaier@stars.flab.fujitsu.co.jp

Fumio Nagashima
Fujitsu Laboratories Limited, Japan

Abstract: Humanoid robots are expected to have variety
of motions that enables good interaction with real human
environment. Making a program for generating several
stable motions using the standard programming language
such as C is not only time consuming but also hard to
understand and tune. For this, a suitable recurrent neural
network language (RNN) inspired from neurobiology has
been developed. In this paper, a simple method of motion
generation based on polynomials generated by RNN is
presented. All motions are generated using a basic RNN
circuit of a first order polynomial. Using this method it is
easy to generate a complex motion of humanoid robot.
Furthermore, Feedback controllers can be easily inserted
in the RNN circuit of a motion at any desired timing. Both
rhythmic and non-rhythmic motion can be generated based
on the same strategy. The effectiveness of the proposed
method is verified by experimental results.

Keywords: Recurrent Neural Network, Polynomials,
Central Pattern Generator.

1 Introduction
Recently, humanoid robots are getting more
popularity and attracted many researchers who have
developed a variety of solutions dealing with its
motion and behavior. Most previous works were
focused on the generation of motion using
Newtonian dynamics equations, which require a lot
of computational effort and a long development time
as well. In our research therefore, we focused on the
biological based models using the Recurrent Neural
Network (RNN) theory. For this, an RNN language
has been developed[1,2,3,4], suitable for the
programmers to reflect the biological process in
generating robot motion. In contrast to the
mathematical notations [6, 7], this proposed language
would be expected to express the learning process of
a motion, just by changing connections, and their
weights for a given RNN circuit. The basic idea
behind this language is taken from neurobiology,
where the neural network is assumed to solve
problems using 4 types of operations namely,
summation, multiplication by a constant,

introduction of a time delay constant, and switching.
Accordingly, the proposed RNN language is limited
to these four operations. Using this language, several
RNN circuits are easily designed termed Central
Pattern Generators (CPG).
In this paper, generation of both rhythmic and
non-rhythmic motions is presented. The procedure
adopted to generate a non-rhythmic motion is based
on a simple RNN circuit that generates a first order
polynomial. For example, a kicking motion consists
of a set of basic circuits. All circuits are linked to
only one neuron. Once the motion is designed, each
joint motion is smoothened through a neuron to
assure the continuity of the angular velocity. The
designed motion has only two parameters; the
kicking speed and angle. Then motion is tuned so
that it remains stable for a wide range of kicking
speed. As for the rhythmic motion, for instance the
walking motion, it is designed for one motion cycle
following the same steps of generating a
non-rhythmic motion, previously mentioned. To
make the motion a cyclic one, a time shift is
considered from an upper level layer so that the
motion will be regenerated consecutively.

Moreover, compliance and feedback control are
also realized for the stability and smoothness of the
robot motion, where compliance control is activated
at the landing phase, while the feedback controller is
enabled during the lifting phase. The feedback
controllers are designed for a second order plant
model. The controllers input signals are from both
gyro and sole sensors. A low pass filters are
introduced into the control loop. In addition, gait
control is also considered, where motion switching
is controlled by an upper level layer that has input
signals from the gyro sensors.

As a result, using our proposed method, it is easy
to implement both feedback and compliance
controllers as well as ensuring any switching
condition. An experiment is conducted by having the
humanoid robot HOAP-2[5] of Fujitsu walk stably on
an obstacle of 12mm height. The robot can also
walks with a large step.

2 Proposed RNN Language[1]
2.1 Mathematical model of a neuron
 The mathematical model of a single neuron in the
proposed RNN language is given by eq.1. Figure 1
shows its graphical representation.

∑=+
j

jiji
i

i ycy
dt

dy
ε (1)

where yi is the output of neuron i, εi is a time delay
constant, and yj is the output of neuron j that
represents an input of neuron i through a weighting
factor cij. Notice that εi can be interpreted as the rise
time constant of a step input [6].

2.2 Basic elements
 In the proposed RNN language, four basic
elements are defined and summarized in Fig.2,
which are neuron, wire, cable-C, and cable-W. Their
definitions are stated below
2.2.1 Neuron
To create a neuron with a time delay constant ε and
initial value V0, we can proceed as follows

var a(ε) = V0;

2.2.2 Wire
The function of a wire is to connect 2 neurons. For
example, neuron “a” is connected to neuron “b” by a
wire of weighting factor C as follows

a := C * b;

2.2.3 Cable-W
Cable-W consists of changing wire’s weighting
factor. It is created as follows,

var C(ε) = V0;

var a(ε1);

var b(ε1);

a := C * b;

2.2.4 Cable-N
The function of cable-W is to change other neuron’s
time delay constant.

var eps(ε) = V0;

var a(eps) = W0;

 C1

C2

C3

yi
ε

Fig. 1 Representation of a single neuron

ε
y0

y

y

(a) (b) (c) (d)
Fig. 2 Basic elements of the proposed RNN language
(a): neuron, (b): wire, (c): cable-W, and (d): cable-N

2.3 Permitted Operations
Only 4 types of operations, as shown in Fig.3, are
permitted in the proposed RNN language, namely
summation, multiplication by a constant,
introduction of a time delay, and switching. Notice
that a threshold can be considered as a switcher.
The symbol “#” in fig 3 is used for comment out.
The graphical notations of switchers are shown in fig. 5.

Remark
Both cable-W and cable-N involve a nonlinear
operation. This does not contradict the definition of
the proposed language, since cables belong to an
upper level layer with a different time scale.

2.4 RNN Circuits
RNN circuit is a set of neurons connected to each
other by wires. A circuit presents an output and
input connections. For example, Fig. 4 shows how to
create a circuit “Joint”.

var v(0.0);
var w(0.0);
var y1(ε1);
var y2(ε2);

y := C1 * y1; # Multiply by a constant
y := C1 * y1 + C2 * y2; # Summation
v := if(0.2 < y1) 1.0 * y; # Switcher
w := 1.0 * (0.2 <) y; # Threshold

Dead
Create four
neurons

neurons

 Fig. 3 Permitted operation of the proposed language

input in[2];
output out[1];
circuit Joint {var p; …}
out[0] := 1.0 * ::Joint::p + 1.0 * in[0] +1.0 * in[1];

Fig. 4 Syntax of creating RNN circuit

y1

1>
c

y2

c
y1

y2

y3

(a) (b)

Fig. 5 Switching in RNN language
(a): threshold, (b): switcher

3 Proposed Motion Generation Method
The proposed method consists of designing CPGs of
several motions using RNN language and based on a
basic circuit generating first order polynomials.

3.1 Basic RNN circuit
The basic RNN circuit generating first order
polynomial is shown in fig. 5. It consists of 2
neurons u and n, and sub-circuit P1. Neuron u
generates a unit constant that will be used in the
whole RNN circuit, while neuron n generates a first
order polynomial by inserting the output of u into
neuron n through a wire of weight Cs. All neurons of
the sub-circuit P1 have null time delay constant, in
other words they are just connections and digital
switchers.
The output y of the basic RNN circuit is shown in
fig.7. It consists of one degree rotation starting at
time ts with a constant angular velocity k=cs.m. The
parameter sw is used to switch ON/OFF a motion.
By fixing the value of ε equals to 1, the output y1 can
be expressed as follows,

ss ttcv −=1 (2)

Where ts is a parameter expressed in a number of
time cycle of a given reference motion T, and cs is a
constant s.t., Tcs 1= .
3.2 Motion Generation using basic RNN circuit
Motion can be regarded as a sequence of basic
motions generated by polynomials of low order
degree. For example, to pick up an object, human
will not enjoy generating a complex motion rather
than a sequence of simple and smooth motions.
Therefore, as shown in fig.8, our idea consists of
generating a sequence of motions using the basic
RNN circuit of fig. 6.

ε
cs

1

-ts

0.1

1

1 0
u

1
P1

n

v1 v2 v3 y1

1> 0<
sw m 1

Fig. 6 Basic RNN Circuit generating first order

polynomial

ts

y1 1

cs

0
t

v1

k

Fig. 7 Output generated by the circuit of fig.6

Now writing the expression of the motion output of
joint ji as follows,

1)(with
0

≤−=

=∑
=

iiii

n

i
iii

ttky

ycj

δ

 (3)

Where 0≥ik and 0 1 =≥= iii elsettif δδ .
Notice that with regards to fig6, isi mck =

Since the parameter mi determines the velocity of the
motion from time ti to ti+1, it should be designed
carefully taking into account the dynamics of the
motion. Trial and error method can be very effective
way to find the appropriate value of this parameter.
As it can be seen from fig. 8, the design of the
motion using the proposed method is straightforward
and it can be generated based on sensory feedback
system.

cs

1

tn

1
u

ε
0

n

1

y2 y3 y

1> 0<
1 sw

P1

y1
y2 y3 y

1> 0<
tg 1 sw

P2

y1 y2 y3 y

1> 0<
tg 1 sw

Pn

t1

t2

Motion Circuit

1

1

1

0.1

Fig. 8 How to generate motion using basic RNN circuit

cs

1

0.1

1

1 u

ε
0

n

α
0 J3

α
0 J4

α
0

J2

α
0

J1

t1

t3

t4

t2

t5

t6

t0

8

8

6

6

6

+R

-R

+L1

+L2

-L1

-L2

+L1

-L1

0.8

0.2
-1

1
1.2

-0.9
0.9 0.8

-0.8 Speed
1

1

1

1

1

1

1

S1

S3

S4

S2

S5

S6

S0

IN

Fig. 9 Kick motion generation using basic RNN circuit

3.3 Generation of Kick Motion
As shown in fig.9, the kick motion consists of a
sequence of 7 basic motions at different timing ti.
Only one parameter named “Speed” that this motion
depends on, which may vary within a defined
interval. By using cable-W, this parameter “Speed”
changes the wires’ weights so that the robot motion
remains stable at different kicking speed. To
determine this parameter, trial and error method was
adopted. It can be also determined using recursive
method with sensory feedback and a defined
evaluation function. Moreover, to ensure the
continuity of the angular velocity of the motion,
each joint’s output is passed through a neuron of a
delay α. The sub-circuits S0 and S6 are used to
generate the rolling motion of amplitude “R”. Notice
that if the kicking speed parameter is null, the
motion of the robot will be reduced to a rolling and
lifting only. The parameter L1 and L2 correspond to
the lifting amplitude of the heap-ankle and knee,
respectively. Also it should be noticed that the same
sub-circuits Si can be used for several motions, such
as walking, standing etc...
Remark: For the readability of fig. 9, the kicking
angle parameter was ignored.

4 Motion Stabilizers
The state space configuration of a system is
converted to RNN structure based on the definition
of the neuron model given by eq.1. Let’s consider
the state space of a single input single output (SISO)
controlled system of order n, which has the
following expression.

 ux
dt
dx BA += (4)

xy C= (5)
The index form of eq. 4 can be written as follows.

 ubxa
dt
dx

i

n

j
jij

i +=∑
=1

 (6)

That can be re-written as

u
a
bx

a
a

xx
dt
dx

a ii

ii
n

j
j

ii

iji
iii

i

ii

i δδ
δδ

+++=+ ∑
=2

)1((7)

where)(iii asign=δ .
As a result, the right side of eq.7 represents the value
of the neuron output xi, and the left side parts are the
inputs to the neuron.

Figure 10 shows the RNN circuit of the second order
SISO system (n=2), with the following parameters

δ+= 1k ,
ii

i
i a

δε = ,
ii

i
i a

bid δ
= , ji

a
a

f
ii

iji
i ≠= ;

δ

ε1

ε2

0.01

d2

d1 c1

c2

1

k

IN
Sensor

f1 f2

x2

x1

k

y u

Fig. 10 RNN structure of state model of eqs.4, 5

4.1 Feedback and compliance controllers
State space controllers are designed for a second
order plant model of an inverse pendulum shown by
fig.10. The initial value of the controllers’
parameters were obtained by simulation then tuned
during experimentation. For instance, to stabilize the
pitching motion of the robot, two controllers can be
used. One controller has angular velocity input from
the gyro sensor and the second one has input from
the sole sensor. As for the compliance controllers
they are also state space controller but with different
purpose than that of the feedback controller. By
changing the gain of the controller’s input, the
stiffness changes accordingly. Therefore, this
parameter can be controlled according to the type of
motion. For example, it can be adjusted for a soft
landing of the robot leg during walking, based on the
sole sensor’s input. The merits of having an RNN
implementation of the controller are, 1) easy to tune,
2) easy to switch at the desirable timing, and 3) the
whole motion circuit remains simple.

5 Motion Control System
The real-time control algorithms are implemented in
real-time threads running at RT-Linux kernel space.
Linux user space applications are in charge of
network interface, user command parsing, message
distribution, and data server management. The
real-time threads communicate with user space
applications for data transfer by using high speed
FIFOs, while commands are sent to the kernel by
slow speed FIFO. Kernel mode shared memory
(SM) is constructed for communication between
real-time threads. Fig.11 shows the diagram of the
system software, where application program
interface was made to connect with a client program
that can run in either Windows or Linux.
The control algorithms were implemented in
real-time control thread. After the construction of
kernel RNN circuit, the control thread was
scheduled for periodical execution. The control
period is 1ms. The RNN interface with the robot was
realized by real-time USB driver thread.
Figure 12 shows the RNN circuit that generates a set
of motions. An interface layer (RNN_IO) switches
the appropriate motion upon user’s request.

Application
Program
Interface

User
Application

RNN
Thread

USB
Thread

SM 2

High
speed
FIFOs

Slow speed FIFO

LINUX
SM 1

KERNEL

WINDOWS /LINUX

Socket

Fig. 11 Structure of motion control system

Walk Standup Kick

RNN_IO

IN OUT

Lie down

Basic RNN Circuit

Fig. 12 RNN circuit for various motions

5.1 Walking motion
Using FUJITSU Robot HOAP-2, the walking
motion with compliance controller generated by the
proposed method enabled the robot to walk with
large step (20cm) and fast speed as well (11.8cm/s).
The outputs of the CPG circuit to the knee joint of
the right leg (pitching and the rolling) are shown in
fig. 13. The procedure of making this rhythmic
motion is the same as that of making kick motion
with the addition of time shift by one walking cycle.
Notice that this motion is generated using 11 basic
CPG circuits of fig. 6.
Inserting the compliance controller in the RNN
motion circuit yields the outputs of figs. 14, 15 and
16, where the sensory feedback considerably has
changed the pitching motion of the heap, knee, and
ankle. As a result, the robot can walk stably and get
adapted with the terrain. Using this combination of
CPG and sensory feedback the robot becomes able
to walk not only on horizontal terrain but also on a
slope, and stairs with different step height.

Fig. 13 Heap Motion using the proposed CPG circuit

Fig. 14 Pitching motion of the heap joint

Fig. 15 Pitching motion of the knee joint

Fig. 16 Pitching motion of the ankle joint

Moreover, the gain of the compliance controller, the
robot can walk on an obstacle of 12mm height. By
controlling the timing ti of the basic RNN circuits in
eq.3 from an upper level layer, the gait can be
controlled so that during motion.

6 Conclusion
In this paper, a simple method for generation of both
rhythmic and non-rhythmic motions was proposed.
The procedure adopted to generate a non-rhythmic
motion is based on a simple RNN circuit that

generates a first order polynomial. To illustrate this
idea a kicking motion was design based on the
proposed method. The steps of making motion were
straightforward and the tuning can be easily
achieved. Furthermore, the walking motion was also
generated based on the same procedure of the kick
motion with time shift by one walking cycle.

On the other hand, to make a generated walking
motion adaptive, compliance and feedback control
were realized so that the robot may walk on
horizontal terrain, slope, and stairs with different
heights. As a result, using our proposed method, it
was easy to implement both feedback and
compliance controllers as well as ensuring any
switching condition. An experiment was conducted
by having FUJITSU humanoid robot HOAP-2[5]
walks stably on an obstacle of 12mm height. The
robot can also walks with a large step.

References
1. Zaier, R, Nagashima, N., Recurrent Neural Network
Language for Robot Learning, The 20th Annual
Conference of the Robotics Society of Japan,2002
2. Nagashima, F., A Motion Learning for a Robot using
CPG/NP, The 20th conf. of Robotics Society of Japan, 2002
3. Jiang, S., Nagashima, F., Biologically Inspired Spinal
locomotion Controller for Humanoid Robot, 19th Annual
Conference of the Robotics Society of Japan, 517-518,
2001
4. Jiang, S., Nagashima, F., Neural LocomotionController
Design and Implementation for Humanoid Robot HOAP-1,
The 20th Annual Conference of the Robotics Society of
Japan, 2003
5. Murase, Y., Yasukawa, Y., Sakai, K., Ueki, M., Design
of Compact Humanoid Robot as a Platform, 19th Annual
Conference of the Robotics Society of Japan, 789-790,
2001
6. Matsuoka, K., Mechanisms of Frequency and Pattern
Control in the Neural Rhythm Generators, Biol. Cybern,
56, 345-353, 1987
7. Taga, G., A model of the neuro-musculo-skeletal system
for human locomotion, I. Emergence of basic gait, Boil.
Cybern, 73, 97-111, 1995

